Domain \#1: The Heart of Algebra

Weeks \#1 and \#2 Example Problems

Example \#1: In 2014, County X had 783 miles of paved roads. Starting in 2015, the country has been building 8 miles of new paved roads each year. At this rate, how many miles of paved road will Country X have in 2030? (Assume that no paved roads go out of service).

Note that this question has no choices. It is a student-produced response question. On the SAT, you would grid your answer in the spaces provided on the answer sheet.

Example \#2: In 2014, County X had 783 miles of paved roads. Starting in 2015, the country has been building 8 miles of new paved roads each year. At this rate, if n is the number of years of 2014, which of the following functions fgives the number of miles of paved road there will be in Country X? (Assume that no paved roads go out of service.)
A) $f(n)=8+783 n$
B) $f(n)=2014+783 n$
C) $f(n)=783+8 n$
D) $f(n)=2014+8 n$

Example \#3: In 2014, County X had 783 miles of paved roads. Starting in 2015, the country has been building 8 miles of new paved roads each year. At this rate, in which year will Country X first have at least 1,000 miles of paved roads? (Assume that no paved roads go out of service.)

Example \#4: To edit a manuscript, Miguel charges $\$ 50$ for the first 2 hours and $\$ 20$ per hour after the first 2 hours. Which of the following expresses the amount, C, in dollars, Miguel charges if it takes him x hours to edit a manuscript, where $x>2$?
A) $C=20 x$
B) $C=20 x+10$
C) $C=20 x+50$
D) $C=20 x+90$

Example \#5: A builder uses the function g defined by $g(x)=80 x+10,000$ to estimate the cost $g(x)$ in dollars to build a one-story home of planned floor area of x square feet. If the builder estimates that the cost to build a certain one-story home is $\$ 106,000$, what is the planned floor area, in square feet, of the home?

Example \#6: Maizah bought a pair of pants and a briefcase at a department store. The sum of the process of the pants and the briefcase before sales tax was $\$ 130$. There was no sales tax on the pants and a 9% sales tax on the briefcase. The total Maizah paid, including sales tax, was \#136.75. What was the price, in dollars, of the pants?

Example \#7: Each morning, John jogs 6 miles per hour and rides a bike at 12 miles per hour. His goal is to jog and ride his bike a total of at least 9 miles in no more than 1 hour. If John jogs j miles and rides his bike b miles, which of the following systems of inequalities represents John's goal?
A) $\frac{j}{6}+\frac{b}{12} \leq 1$ $j+b \geq 9$
B) $\frac{j}{6}+\frac{b}{12} \geq 1$
$j+b \leq 9$
C) $6 j+12 b \geq 9$
$j+b \leq 1$
D) $6 j+12 b \leq 1$
$j+b \geq 9$

Example \#8: What is the solution to the equation: $\quad 3\left(\frac{1}{2}-y\right)=\frac{3}{5}+15 y$

Example \#9: What is the solution to the equation: $\quad-2(3 x-2.4)=-3(3 x-2.4)$

Example \#10: What is the solution (x, y) to the system of equations:

$$
\begin{gathered}
-2 x=4 y+6 \\
2(2 y+3)=3 x-5
\end{gathered}
$$

Example \#11: How many solutions (x, y) are there to the system of equations:

$$
\begin{gathered}
2 y+6 x=3 \\
y+3 x=2
\end{gathered}
$$

A) Zero
B) One
C) Two
D) More than two

Example \#12: In the system of equations below, a and b are constants. If the system has infinitely many solutions, what is the value of a ?

$$
\begin{gathered}
3 s-2 t=a \\
-15 s+b t=-7
\end{gathered}
$$

Example \#13:

The graph of line k is shown in the $x y$-plane above. Which of the following is an equation of a line that is perpendicular to line k ?
A) $y=-2 x+1$
B) $y=-\frac{1}{2} x+2$
C) $y=\frac{1}{2} x+3$
D) $y=2 x+4$

Example \#14: A voter registration drive was held in Town Y. The number of votes, V, registered T days after the drive began can be estimated by the equation $V=3450+65 T$. What is the best interpretation of the number 65 in this equation?
A) The number of registered voters at the beginning of the registration drive
B) The number of registered votes at the end of the registration drive
C) The total number of voters registered during the drive
D) The number of voters registered each day during the drive

