Exponential and Logarithmic Functions

The inverse of $f(x) = b^x$ is called a logarithmic function with base *b*, denoted $\log_b x$, and read log base b of x.

The statement above indicates that $\log_b x$ is defined as the exponent to which *b* must be raised in order to produce *x*. Therefore, when evaluating a logarithm, remember that a logarithm is an exponent.

There are many logarithms that you can evaluate without the use of a calculator.

Example #1: Evaluate log₃ 81

Step #1: Set the log equal to <i>x</i> .	$\log_3 81 = x$
Step #2: Exponentiate	$3^{x} = 81$
Step #3: Write both sides with the same base.	$3^x = 3^4$
Step #4: Drop the bases and solve for <i>x</i> .	x = 4

Example #2: Evaluate $\log_5 \sqrt{5}$

Example #3: Evaluate $\log_7 \frac{1}{49}$

Example #4: Evaluate $\log_{16}\sqrt{2}$

Special Types of Logarithms:

- 1. Common log: log with a base of 10 written as $\log x$ but means $\log_{10} x$
- 2. Natural log: log with a base of e written as $\ln x$ but means $\log_e x$

e is an irrational number approximately equal to 2.71828

These special logs can be evaluated using a calculator. The common log button says LOG and the natural log says LN.

Note:

 $log_b b = 1$ $log_b 1 = 0$ ln 1 = 0ln e = 1

Example #5: Evaluate log 0.001

You can simply type this into your calculator since it is a common log, or to complete the problem by hand. (Note you will not be able to complete every problem by hand).

Rewrite as	$\log_{10} 0.001 = x$
Write as an exponent:	$10^x = 0.001$
Write both sides with the same base:	$10^x = 10^{-3}$
Drop the bases and solve for x:	x = -3

Example #6: Evaluate log 26

Example #7: Evaluate log(-5)

Example #8: Evaluate log 10,000

Example #9: Evaluate ln 4

Example #10: Evaluate ln 32

Recall Properties of Exponents:

1. $b^x \cdot b^y = b^{x+y}$

$$2. \quad \frac{b^x}{b^y} = b^{x-y}$$

3.
$$(b^x)^y = b^{xy}$$

Since logarithms and exponents have an inverse relationship, these properties of exponents imply these corresponding properties of logarithms.

- 1. Product Property: $\log_b xy = \log_b x + \log_b y$
- 2. Quotient Property: $\log_b \frac{x}{y} = \log_b x \log_b y$
- 3. Power Property: $\log_b x^p = p \log_b x$

Example #11: Evaluate $\log_4 \sqrt[5]{64}$

Since the base of the log is 4, we want to express $\sqrt[5]{64}$ with a base of 4 to some power.

$$\sqrt[5]{64} = 64^{\frac{1}{5}} = (4^3)^{\frac{1}{5}} = 4^{\frac{3}{5}}$$

So: $\log_4 \sqrt[5]{64} = \log_4 4^{\frac{3}{5}} = \frac{3}{5}\log_4 4 = \frac{3}{5}(1) = \frac{3}{5}$

Example #12: Evaluate $5lne^2 - lne^3$

Example #13: Evaluate $\log_6 \sqrt[3]{36}$

Example #14: Evaluate $2 \log_3 \sqrt{27}$

The properties of logarithms provide a way of expressing logarithmic expressions in forms that use simpler operations, converting multiplication into addition, division into subtraction, and powers and roots into multiplication.

Example #15: Expand $\log 12x^5y^{-2}$

Multiplication expands to addition: $\log 12 + \log x^5 + \log y^{-2}$

Exponents can be rewritten as coefficients in front of each log: $\log 12 + 5 \log x - 2 \log y$

Example #16: Expand $\ln \frac{x^2}{\sqrt{4x+1}}$

Example #17: Expand $\log_{13} 6a^3bc^4$

The same methods used to expand logs can be used to condense them.

Example #18: Condense $4 \log_3 x - \frac{1}{3} \log_3(x+6)$

Since these have the same base (3), we can condense them into one log.

Start by writing the coefficients as exponents: $\log_3 x^4 - \log_3 (x+6)^{\frac{1}{3}}$

Subtraction condenses to subtraction: $\log_3 \frac{x^4}{(x+6)^{\frac{1}{3}}} = \log_3 \frac{x^4}{\sqrt[3]{x+6}}$ at this point you should rationalize the denominator.

Example #19: Condense $6\ln(x - 4) + 3\ln x$

Example #20: Condense $-5 \log_2(x+1) + 3 \log_2(6x)$

Change of Base Formula: Sometimes you may need to work with a logarithm that has an inconvenient base. For example, evaluating $\log_3 5$ presents a challenge because calculators have no key for evaluating base 3 logarithms. The change of base formula provides a way of changing such an expression into a quotient of logarithms with a different base.

$$\log_b x = \frac{\log_a x}{\log_a b}$$
 or $\frac{\ln x}{\ln b}$

Example #21: Evaluate: $\log_3 5$

Use the change of base formula: $\frac{\log 5}{\log 3}$

Use a calculator to evaluate since they are in base 10: $\frac{\log 5}{\log 3} = 1.47$

Example #22: Evaluate: $log_1 6$

Example #23: Evaluate: log₁₅ 33

One-to-One Property of Exponential Functions

If $3^x = 3^5$, then x = 5

If $log \ x = 3$, then $10^3 = x$

Example #24: Solve the equation: $36^{x+1} = 6^{x+6}$

Example #25: Solve the equation: $\left(\frac{1}{2}\right)^c = 64^{\frac{1}{2}}$

Example #26: Solve the equation: $16^{x+3} = 4^{4x+7}$

Example #27: Solve the equation: $\left(\frac{2}{3}\right)^{x-5} = \left(\frac{9}{4}\right)^{\frac{3x}{4}}$

Exponentiating

Example #28: ln x = 6

Example #29: $6 + 2 \log 5x = 18$

Example #30: $\log_8 x^3 = 12$

Example #31: $-3 \ln x = -24$

Example #32: $4 - 3\log(5x) = 16$

Example #33: $\log_3(x^2 - 1) = 4$

Solving Exponential Equations (when you cannot get a like base on both sides)

Example #34: $4^x = 13$

Example #35: $8^x = 0.165$

Example #36: $1.43^{x} + 3.1 = 8.48$

Example #37: $e^{2+5x} = 12$

Example #38: $e^{4-3x} = 6$

More logarithmic equations

Example #39: $\ln(x+2) + \ln(3x-2) = 2 \ln 2x$

Example #40: $\log_{12} 12x + \log_{12}(x - 1) = 2$