Exponential and Logarithmic Functions

The inverse of $f(x)=b^{x}$ is called a logarithmic function with base b, denoted $\log _{b} x$, and read log base b of \mathbf{x}.

Relating Logarithmic and Exponential Forms

The statement above indicates that $\log _{b} x$ is defined as the exponent to which b must be raised in order to produce x. Therefore, when evaluating a logarithm, remember that a logarithm is an exponent.

There are many logarithms that you can evaluate without the use of a calculator.
Example \#1: Evaluate $\log _{3} 81$
Step \#1: Set the log equal to x.
Step \#2: Exponentiate
Step \#3: Write both sides with the same base.
Step \#4: Drop the bases and solve for x.

Example \#2: Evaluate $\log _{5} \sqrt{5}$

Example \#3: Evaluate $\log _{7} \frac{1}{49}$

Example \#4: Evaluate $\log _{16} \sqrt{2}$

Special Types of Logarithms:

1. Common log: log with a base of 10 written as $\log x$ but means $\log _{10} x$
2. Natural log: log with a base of e written as $\ln x$ but means $\log _{e} x$ e is an irrational number approximately equal to 2.71828

These special logs can be evaluated using a calculator. The common log button says LOG and the natural log says LN.

Example \#5: Evaluate $\log 0.001$
You can simply type this into your calculator since it is a common log, or to complete the problem by hand. (Note you will not be able to complete every problem by hand).

Rewrite as
Write as an exponent:
Write both sides with the same base:
Drop the bases and solve for x :

Example \#6: Evaluate $\log 26$

Example \#7: Evaluate $\log (-5)$
Example 7: Evaluatelog(-5)
$\log _{10} 0.001=x$
$10^{x}=0.001$
$10^{x}=10^{-3}$
$x=-3$

Example \#8: Evaluate $\log 10,000$

Example \#9: Evaluate $\ln 4$

Example \#10: Evaluate $\ln 32$

Recall Properties of Exponents:

1. $b^{x} \cdot b^{y}=b^{x+y}$
2. $\frac{b^{x}}{b^{y}}=b^{x-y}$
3. $\left(b^{x}\right)^{y}=b^{x y}$

Since logarithms and exponents have an inverse relationship, these properties of exponents imply these corresponding properties of logarithms.

1. Product Property: $\log _{b} x y=\log _{b} x+\log _{b} y$
2. Quotient Property: $\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$
3. Power Property: $\log _{b} x^{p}=\mathrm{p} \log _{b} x$

Example \#11: Evaluate $\log _{4} \sqrt[5]{64}$
Since the base of the log is 4 , we want to express $\sqrt[5]{64}$ with a base of 4 to some power.

$$
\begin{gathered}
\sqrt[5]{64}=64^{\frac{1}{5}}=\left(4^{3}\right)^{\frac{1}{5}}=4^{\frac{3}{5}} \\
\text { So: } \log _{4} \sqrt[5]{64}=\log _{4} 4^{\frac{3}{5}}=\frac{3}{5} \log _{4} 4=\frac{3}{5}(1)=\frac{3}{5}
\end{gathered}
$$

Example \#12: Evaluate $5 \ln e^{2}-\ln e^{3}$

Example \#13: Evaluate $\log _{6} \sqrt[3]{36}$

Example \#14: Evaluate $2 \log _{3} \sqrt{27}$

The properties of logarithms provide a way of expressing logarithmic expressions in forms that use simpler operations, converting multiplication into addition, division into subtraction, and powers and roots into multiplication.

Example \#15: Expand $\log 12 x^{5} y^{-2}$
Multiplication expands to addition: $\log 12+\log x^{5}+\log y^{-2}$
Exponents can be rewritten as coefficients in front of each $\log : \log 12+5 \log x-2 \log y$

Example \#16: Expand $\ln \frac{x^{2}}{\sqrt{4 x+1}}$

Example \#17: Expand $\log _{13} 6 a^{3} b c^{4}$

The same methods used to expand logs can be used to condense them.
Example \#18: Condense $4 \log _{3} x-\frac{1}{3} \log _{3}(x+6)$

Since these have the same base (3), we can condense them into one log.
Start by writing the coefficients as exponents: $\log _{3} x^{4}-\log _{3}(x+6)^{\frac{1}{3}}$
Subtraction condenses to subtraction: $\log _{3} \frac{x^{4}}{(x+6)^{\frac{1}{3}}}=\log _{3} \frac{x^{4}}{\sqrt[3]{x+6}}$ at this point you should rationalize the denominator.

Example \#19: Condense $6 \ln (x-4)+3 \ln x$

Example \#20: Condense $-5 \log _{2}(x+1)+3 \log _{2}(6 x)$

Change of Base Formula: Sometimes you may need to work with a logarithm that has an inconvenient base. For example, evaluating $\log _{3} 5$ presents a challenge because calculators have no key for evaluating base 3 logarithms. The change of base formula provides a way of changing such an expression into a quotient of logarithms with a different base.

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \text { or } \frac{\ln x}{\ln b}
$$

Example \#21: Evaluate: $\log _{3} 5$
Use the change of base formula: $\frac{\log 5}{\log 3}$
Use a calculator to evaluate since they are in base 10: $\frac{\log 5}{\log 3}=1.47$
Example \#22: Evaluate: $\log _{\frac{1}{2}} 6$

Example \#23: Evaluate: $\log _{15} 33$

One-to-One Property of Exponential Functions

If $3^{x}=3^{5}$, then $x=5$
If $\log x=3$, then $10^{3}=x$

Example \#24: Solve the equation: $36^{x+1}=6^{x+6}$

Example \#25: Solve the equation: $\left(\frac{1}{2}\right)^{c}=64^{\frac{1}{2}}$

Example \#26: Solve the equation: $16^{x+3}=4^{4 x+7}$

Example \#27: Solve the equation: $\left(\frac{2}{3}\right)^{x-5}=\left(\frac{9}{4}\right)^{\frac{3 x}{4}}$

Exponentiating

Example \#28: $\ln x=6$

Example \#29: $6+2 \log 5 x=18$

Example \#30: $\log _{8} x^{3}=12$

Example \#31: $-3 \ln x=-24$

Example \#32: $4-3 \log (5 x)=16$

Example \#33: $\log _{3}\left(x^{2}-1\right)=4$

Solving Exponential Equations (when you cannot get a like base on both sides)

Example \#34: $4^{x}=13$

Example \#35: $8^{x}=0.165$

Example \#36: $1.43^{x}+3.1=8.48$

Example \#37: $e^{2+5 x}=12$

Example \#38: $e^{4-3 x}=6$

More logarithmic equations
Example \#39: $\ln (x+2)+\ln (3 x-2)=2 \ln 2 x$

Example \#40: $\log _{12} 12 x+\log _{12}(x-1)=2$

