1. The sine function shown below has a minimum at $x = 2\pi$ and an x-intercept at x = 0:

The x-intercept at P is given by:

- [A] $x = \frac{9\pi}{4}$ [B] $x = \frac{5\pi}{2}$ [C] $x = \frac{8\pi}{3}$ [D] $x = 3\pi$ [E] $x = 4\pi$
- 2. $\sin x + \sin(\pi x) =$
 - [A] 0 [B] 1 [C] $2 \sin x$ [D] $\sin x + \cos x$ [E] $\cos^2 x$
- 3. Of the following numbers, which is the largest?
 - [A] $\cos 0$ [B] $\cos \frac{\pi}{6}$ [C] $\cos \frac{\pi}{4}$ [D] $\cos \frac{\pi}{3}$ [E] $\cos \pi$

4. In the right triangle shown, $\tan \theta =$

[A] x
[B]
$$x\sqrt{x^2-1}$$

[C] x^2+1
[D] $\frac{1}{2}(x^2-1)$
[E] $\sqrt{x^2-1}$

5. When $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$, which of the following could possibly be $\tan \theta$?

- [A] -8 $[B] -\frac{1}{8}$ [C] 0 [D] $\frac{1}{8}$ [E] 8
- 6. For all real numbers x, $\cos^2 x \sin^2 x =$
 - [A] 0
 - [B] 1 [C] sin 2*x*
 - [D] $\cos 2x$
 - [E] $\cos\left(\frac{x}{2}\right)$
- 7. If the angle $\theta = \frac{3\pi}{5}$ radians, then
 - [A] $0^{\circ} < \theta < 90^{\circ}$ [B] $90^{\circ} < \theta < 180^{\circ}$ [C] $180^{\circ} < \theta < 270^{\circ}$ [D] $270^{\circ} < \theta < 360^{\circ}$
- 8. If a light beam makes one complete circular revolution in 20 seconds, how long will it take to sweep out an angle of 150°?
 - [A] less than 3 seconds
 - [B] between 3 and 5 seconds
 - [C] between 5 and 7 seconds
 - [D] between 7 and 10 seconds

9. If $\tan \theta = 3$ and $\sin \theta > 0$, then $\cos \theta$ equals

$$[A] -\frac{3\sqrt{10}}{10} \\ [B] \frac{3\sqrt{10}}{10} \\ [C] \frac{\sqrt{10}}{10} \\ [D] -\frac{\sqrt{10}}{10} \\ \end{bmatrix}$$

10. If $\csc \theta = \frac{13}{5}$ and $\cos \theta < 0$, then $\cot \theta$ equals

 $\begin{bmatrix} A \end{bmatrix} \frac{12}{5} \\ \begin{bmatrix} B \end{bmatrix} - \frac{12}{5} \\ \begin{bmatrix} C \end{bmatrix} \frac{5}{12} \\ \begin{bmatrix} D \end{bmatrix} - \frac{13}{12} \end{bmatrix}$

11. Find the exact value of csc 225°.

$$\begin{bmatrix} A \end{bmatrix} -\sqrt{2} \\ \begin{bmatrix} B \end{bmatrix} -\frac{\sqrt{2}}{2} \\ \begin{bmatrix} C \end{bmatrix} \sqrt{2} \\ \begin{bmatrix} D \end{bmatrix} \frac{\sqrt{2}}{2} \end{bmatrix}$$

12. Find the exact value of $\cot(420^\circ)$.

[A]	$\frac{\sqrt{3}}{2}$
[B]	$\frac{\sqrt{3}}{3}$
[C]	$\sqrt{3}$
[D]	$\frac{1}{2}$

13. If the angle θ in standard position meets the unit circle at $\left(\sqrt{\frac{5}{6}}, -\sqrt{\frac{1}{6}}\right)$, find the value of sin θ and cos θ .

[A]
$$\sin \theta = \sqrt{\frac{5}{6}}$$
 and $\cos \theta = \sqrt{\frac{1}{6}}$
[B] $\sin \theta = -\sqrt{\frac{1}{6}}$ and $\cos \theta = \sqrt{\frac{5}{6}}$
[C] $\sin \theta = -\sqrt{\frac{5}{6}}$ and $\cos \theta = \sqrt{\frac{1}{6}}$
[D] $\sin \theta = \sqrt{\frac{1}{6}}$ and $\cos \theta = -\sqrt{\frac{5}{6}}$

- 14. Find the expression that is equal to $\frac{1+\sin x}{1-\sin x}$.
 - [A] $\sin x + \cos^2 x$ [B] $\frac{\csc x+1}{\csc x-1}$ [C] 0 [D] $\sec^2 x + \tan^2 x$
- 15. The minute hand of a clock is 6cm long. How far does the tip of the minute hand travel in 15 minutes?
 - [A] 12π cm [B] 9π cm [C] 6π cm [D] 3π cm
- 16. Find the area of a sector of a circle with central angle θ =3 radians, if the radius of the circle is 6 in.
 - [A] 54 in²
 [B] 36 in²
 [C] 27 in²
 [D] 18 in²

- 17. Solve $4 \cos \theta + 6 = 5(\cos \theta + 1), 0 \le \theta < 360^{\circ}$.
 - [A] 0°
 - [B] 90°
 - [C] 180°
 - [D] 270°

18. Solve $(2\sin\theta - 3)(\cos\theta + 2) = 0, 0 \le \theta \le \pi$.

- [A] No solution [B] $\theta = \frac{\pi}{3}, 0$ [C] $\theta = 0, \frac{\pi}{2}$ [D] $\theta = \frac{\pi}{3}, \frac{\pi}{2}$
- 19. Solve $2\sin^2\theta = \sin\theta + 1$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.
 - $\begin{bmatrix} A \end{bmatrix} -\frac{\pi}{6}, \frac{\pi}{2} \\ \begin{bmatrix} B \end{bmatrix} \frac{\pi}{3}, -\frac{\pi}{2} \\ \begin{bmatrix} C \end{bmatrix} \frac{\pi}{6}, -\frac{\pi}{2} \\ \begin{bmatrix} D \end{bmatrix} -\frac{\pi}{3}, \frac{\pi}{2} \end{bmatrix}$

20. In a right triangle ABC, $\angle C = 90^{\circ}$ and AC = 12 and $\sin B = \frac{3}{5}$. Find AB.

[A] 20 [B] 6 [C] $2\sqrt{14}$ [D] 8

21. For all real numbers x, $\cos^2(99x) + \sin^2(99x)$ equals

[A] 0
[B] 1
[C] cos(198x)
[D] 99
[E] sin(198x)

22. Which of the following best represents one cycle of the graph of y = cos(4x)?

23. If $m \angle = 30^\circ$, then find the length of BC.

- [A] $\sqrt{43}$ [B] $85 - 42\sqrt{3}$ [C] $\sqrt{85 + 42\sqrt{3}}$ [D] $\sqrt{85 - 42\sqrt{3}}$ [E] $\sqrt{85}$
- 24. Which of the following is larger than $\cos \frac{\pi}{6}$?

[A]
$$\cos \frac{\pi}{2}$$

[B] $\cos \left(-\frac{\pi}{4}\right)$
[C] $\cos \frac{\pi}{4}$
[D] $\cos 0$
[E] $\cos \frac{\pi}{3}$

25. Evaluate $\arccos\left(\cos\frac{7\pi}{4}\right)$.

[A] 1 [B] $-\frac{7\pi}{4}$ [C] $\frac{7\pi}{4}$ [D] $-\frac{3\pi}{4}$ [E] $\frac{\pi}{4}$

26. Evaluate
$$\tan \frac{5\pi}{3}$$
.

$$[A] \frac{1}{2} \\ [B] -\sqrt{3} \\ [C] \sqrt{3} \\ [D] \frac{1}{\sqrt{3}} \\ [E] -\frac{1}{\sqrt{3}} \\ \end{cases}$$

27.
$$\cot\left(\frac{\pi}{2} - \theta\right) =$$

[A] $2 \tan \theta$
[B] $1 - \cot \theta$
[C] ∞
[D] $\tan \theta$
[E] $\frac{1}{2} \tan \theta$

28. For all real numbers x, $\cos(94x)\cos(92x) + \sin(94x)\sin(92x) =$

[A] $1 - 2\sin^2 x$ [B] $\cos^2 x - \sin^2 x$ [C] $2\cos^2 x - 1$ [D] All of the above [E] $\cos(2x)$

29. In simplified form,
$$\frac{3\cos x \sin x + 6\cos^2 x}{6\cos^2 x}$$
 equals

[A]
$$3 \cos x \sin x$$

[B] $\frac{1}{2} \tan x$
[C] $\frac{1}{2} \cot x + 6 \cos^2 x$
[D] $\frac{1}{2} \cot x + 1$
[E] $\frac{1}{2} \tan x + 1$

30. If
$$\cot^2 x = \frac{13}{8}$$
, then $\sec^2 x =$
[A] $\frac{21}{104}$
[B] $\frac{13}{5}$
[C] $\frac{21}{13}$
[D] $\frac{5}{13}$
[E] $\frac{13}{21}$

31. Find the set of θ in the range $[0, 2\pi)$ that satisfy the equation $2\cos^2\theta + 3\cos\theta = 2$.

[A]	$\left\{-\frac{\pi}{3},\frac{5\pi}{3}\right\}$
[B]	$\left\{-\frac{\pi}{3}\right\}$
[C]	$\left\{\frac{\pi}{3},\frac{2\pi}{3}\right\}$
[D]	$\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$
[E]	$\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$

32. If a central angle of 30° is subtended by a circular arc of length 6 meters, as illustrated below, how many meters in length is the radius of the circle?

[A] $\frac{\pi}{36}$ [B] $\frac{1}{5}$ [C] π [D] $\frac{36}{\pi}$ [E] 180 33. A 6-foot spruce tree is planted 15 feet from a lighted streetlight whose lamp is 18 feet above ground. How many feet long is the shadow of the tree?

[A] 5.0
[B] 7.5
[C] 7.8
[D] 9.6
[E] 10.0

34. In the figure below, the lengths of DE, EF and FG are given. What is the area of ΔDEG in square units?

[A] 29 [B] 47.5 [C] 60 [D] $6\sqrt{149}$ [E] 120

35. If $\sin x = \frac{12}{13}$ and $\cos x = \frac{5}{13}$ then $\tan x = ?$

 $\begin{bmatrix} A \end{bmatrix} \frac{5}{12} \\ \begin{bmatrix} B \end{bmatrix} \frac{7}{13} \\ \begin{bmatrix} C \end{bmatrix} \frac{12}{5} \\ \begin{bmatrix} D \end{bmatrix} \frac{17}{13} \end{bmatrix}$

- 36. If $0^{\circ} < x < 90^{\circ}$ and $\sin x = \frac{1}{2}$ the $\cos x = ?$
 - $[A] \frac{1}{2} \\ [B] \frac{\sqrt{3}}{2} \\ [C] 2 \\ [D] \frac{\sqrt{3}}{3} \\ [E] \frac{2\sqrt{3}}{3} \\ \end{bmatrix}$
- 37. From a hot air balloon, the angle between the radio antenna straight below and the base of the library downtown is 57° as shown in the figure below. If the distance between the radio antenna and the library is 1.3 miles, how many miles high is the balloon?

[A]	1.3
נהן	sin 57°
[B]	1.3
	cos 57°
[C]	1.3
	tan 57°
[D]	1.3 sin 57°
[E]	1.3 tan 57°

38. What is the smallest positive value of *x* where $y = \sin 2x$ reaches its maximum?

 $\begin{bmatrix} A \end{bmatrix} \frac{\pi}{4} \\ \begin{bmatrix} B \end{bmatrix} \pi \\ \begin{bmatrix} C \end{bmatrix} \frac{3\pi}{2} \\ \begin{bmatrix} D \end{bmatrix} \frac{2\pi}{2} \\ \begin{bmatrix} E \end{bmatrix} \frac{5\pi}{2} \end{bmatrix}$

39. One of the graphs below is that of $y = A \sin \theta$ for θ between 0 and 6.28 radians, where A is constant. Which one?

40. In the right triangle below, the length of AB is 13 units and the length of CB is 12 units. What is the tangent of A?

- $\begin{array}{c} [A] & \frac{12}{13} \\ [B] & \frac{13}{12} \\ [C] & \frac{12}{5} \\ [D] & \frac{5}{12} \\ [E] & \frac{5}{13} \end{array}$
- 41. The perimeter of the figure with the semicircular top is

[A] 21 [B] $16 + 2\pi$ [C] $16 + 4\pi$ [D] $16 + 18\pi$ [E] None of these

42. Evaluate the following expression $\ln\left[\sin^2\left(\frac{3\pi}{7}\right) + \cos^2\left(\frac{3\pi}{7}\right)\right]$.

[A] 1 [B] 0 [C] e[D] $\frac{\sqrt{3}}{2}$ [E] None of the above.

- 43. Complete the identity: $1 \cos^2(3x) =$
 - [A] $\sin^{2}(3x)$ [B] $-\sin^{2}(3x)$ [C] $3\sin^{2}x$ [D] $\frac{1}{3}\sin^{2}(3x)$ [E] $\sqrt{\sin(3x)}$

44. If $\pi < x < \frac{7\pi}{6}$, then which of the following must be true?

- 45. Which of the following satisfies the equation $\sin x + 3 \sin x \cos x = 2 \sin x$?

[A]
$$x = \sin^{-1}\left(\frac{1}{2}\right)$$

[B] $x = \tan\left(\frac{2}{3}\right)$
[C] $x = \sec 3$
[D] $x = \cos^{-1}\left(\frac{1}{3}\right)$
[E] $x = \frac{2\pi}{3}$

46. Evaluate $\sin^{-1}\left(\frac{1}{2}\right)$.

 $[A] \frac{\pi}{6}, \frac{5\pi}{6} \\ [B] \frac{\pi}{6} \\ [C] \frac{\pi}{3}, \frac{4\pi}{3} \\ [D] \frac{\pi}{3} \\ [E] \frac{5\pi}{6} \\ \end{bmatrix}$

- 47. In a right triangle ABC the hypotenuse is AB and it measures 17 cm. The leg AC measures 15 cm. What is $\cos B$ if $\angle C = 90^{\circ}$?
 - $\begin{bmatrix} A \end{bmatrix} \frac{17}{8} \\ \begin{bmatrix} B \end{bmatrix} \frac{15}{17} \\ \begin{bmatrix} C \end{bmatrix} \frac{8}{15} \\ \begin{bmatrix} D \end{bmatrix} \frac{15}{8} \\ \begin{bmatrix} E \end{bmatrix} \frac{8}{17} \\ \end{bmatrix}$
- 48. Evaluate $\sin\left(\tan^{-1}\left(-\frac{5}{2}\right)\right)$.

$$\begin{bmatrix} A \end{bmatrix} - \frac{\sqrt{29}}{2} \\ \begin{bmatrix} B \end{bmatrix} - \frac{5}{\sqrt{29}} \\ \begin{bmatrix} C \end{bmatrix} - \frac{\sqrt{21}}{5} \\ \begin{bmatrix} D \end{bmatrix} - \frac{2}{5} \\ \begin{bmatrix} E \end{bmatrix} - \frac{2}{\sqrt{21}} \\ \end{bmatrix}$$

49. Which of the following is equivalent to $\frac{1-\cos^2 x}{\cos^2 x}$?

[A] sec² x
[B] csc² x - 1
[C] tan² x
[D] sin² x
[E]
$$-\frac{1}{\sin^2 x}$$

50. Solve for *x*:
$$\frac{4}{3}\cos^{-1}\left(\frac{x}{4}\right) = \pi$$

$$[A] -2\sqrt{2} [B] -\frac{\sqrt{2}}{2} [C] \frac{3\pi}{4} [D] \frac{3\pi}{4}, \frac{5\pi}{4} [E] \pm \frac{\sqrt{2}}{2}$$