1. The sine function shown below has a minimum at $x=2 \pi$ and an x-intercept at $x=0$:

The x -intercept at P is given by:
[A] $x=\frac{9 \pi}{4}$
[B] $x=\frac{5 \pi}{2}$
[C] $x=\frac{8 \pi}{3}$
[D] $x=3 \pi$
[E] $x=4 \pi$
2. $\quad \sin x+\sin (\pi-x)=$
[A] 0
[B] 1
[C] $2 \sin x$
[D] $\sin x+\cos x$
[E] $\cos ^{2} x$
3. Of the following numbers, which is the largest?
[A] $\cos 0$
[B] $\cos \frac{\pi}{6}$
[C] $\cos \frac{\pi}{4}$
[D] $\cos \frac{4}{3}$
[E] $\cos \pi$
4. In the right triangle shown, $\tan \theta=$
[A] x
[B] $x \sqrt{x^{2}-1}$
[C] $x^{2}+1$
[D] $\frac{1}{2}\left(x^{2}-1\right)$
[E] $\sqrt{x^{2}-1}$

5. When $\frac{\pi}{2}<\theta<\frac{3 \pi}{4}$, which of the following could possibly be $\tan \theta$?
[A] -8
[B] $-\frac{1}{8}$
[C] 0
[D] $\frac{1}{8}$
[E] 8
6. For all real numbers $x, \cos ^{2} x-\sin ^{2} x=$
[A] 0
[B] 1
[C] $\sin 2 x$
[D] $\cos 2 x$
[E] $\cos \left(\frac{x}{2}\right)$
7. If the angle $\theta=\frac{3 \pi}{5}$ radians, then
[A] $0^{\circ}<\theta<90^{\circ}$
[B] $90^{\circ}<\theta<180^{\circ}$
[C] $180^{\circ}<\theta<270^{\circ}$
[D] $270^{\circ}<\theta<360^{\circ}$
8. If a light beam makes one complete circular revolution in 20 seconds, how long will it take to sweep out an angle of 150° ?
[A] less than 3 seconds
[B] between 3 and 5 seconds
[C] between 5 and 7 seconds
[D] between 7 and 10 seconds
9. If $\tan \theta=3$ and $\sin \theta>0$, then $\cos \theta$ equals
[A] $-\frac{3 \sqrt{10}}{10}$
[B] $\frac{3 \sqrt{10}}{10}$
[C] $\frac{\sqrt{10}}{10}$
[D] $-\frac{\sqrt{10}}{10}$
10. If $\csc \theta=\frac{13}{5}$ and $\cos \theta<0$, then $\cot \theta$ equals
[A] $\frac{12}{5}$
[B] $-\frac{12}{5}$
[C] $\frac{5}{12}$
[D] $-\frac{13}{12}$
11. Find the exact value of $\csc 225^{\circ}$.
[A] $-\sqrt{2}$
[B] $-\frac{\sqrt{2}}{2}$
[C] $\sqrt{2}$
[D] $\frac{\sqrt{2}}{2}$
12. Find the exact value of $\cot \left(420^{\circ}\right)$.
[A] $\frac{\sqrt{3}}{2}$
[B] $\frac{\sqrt{3}}{3}$
[C] $\sqrt{3}$
[D] $\frac{1}{2}$
13. If the angle θ in standard position meets the unit circle at $\left(\sqrt{\frac{5}{6}},-\sqrt{\frac{1}{6}}\right)$, find the value of $\sin \theta$ and $\cos \theta$.
[A] $\sin \theta=\sqrt{\frac{5}{6}}$ and $\cos \theta=\sqrt{\frac{1}{6}}$
[B] $\sin \theta=-\sqrt{\frac{1}{6}}$ and $\cos \theta=\sqrt{\frac{5}{6}}$
[C] $\sin \theta=-\sqrt{\frac{5}{6}}$ and $\cos \theta=\sqrt{\frac{1}{6}}$
[D] $\sin \theta=\sqrt{\frac{1}{6}}$ and $\cos \theta=-\sqrt{\frac{5}{6}}$
14. Find the expression that is equal to $\frac{1+\sin x}{1-\sin x}$.
[A] $\sin x+\cos ^{2} x$
[B] $\frac{\csc x+1}{\csc x-1}$
[C] 0
[D] $\sec ^{2} x+\tan ^{2} x$
15. The minute hand of a clock is 6 cm long. How far does the tip of the minute hand travel in 15 minutes?
[A] $12 \pi \mathrm{~cm}$
[B] $9 \pi \mathrm{~cm}$
[C] $6 \pi \mathrm{~cm}$
[D] $3 \pi \mathrm{~cm}$
16. Find the area of a sector of a circle with central angle $\theta=3$ radians, if the radius of the circle is 6 in .
[A] $54 \mathrm{in}^{2}$
[B] $36 \mathrm{in}^{2}$
[C] $27 \mathrm{in}^{2}$
[D] $18 \mathrm{in}^{2}$
17. Solve $4 \cos \theta+6=5(\cos \theta+1), 0 \leq \theta<360^{\circ}$.
[A] 0°
[B] 90°
[C] 180°
[D] 270°
18. Solve $(2 \sin \theta-3)(\cos \theta+2)=0,0 \leq \theta \leq \pi$.
[A] No solution
[B] $\theta=\frac{\pi}{3}, 0$
[C] $\theta=0, \frac{\pi}{2}$
[D] $\theta=\frac{\pi}{3}, \frac{\pi}{2}$
19. Solve $2 \sin ^{2} \theta=\sin \theta+1,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
[A] $-\frac{\pi}{6}, \frac{\pi}{2}$
[B] $\frac{\pi}{3},-\frac{\pi}{2}$
[C] $\frac{3}{6},-\frac{\pi}{2}$
[D] $-\frac{\pi}{3}, \frac{\pi}{2}$
20. In a right triangle $\mathrm{ABC}, \angle C=90^{\circ}$ and $A C=12$ and $\sin B=\frac{3}{5}$. Find AB .
[A] 20
[B] 6
[C] $2 \sqrt{14}$
[D] 8
21. For all real numbers $x, \cos ^{2}(99 x)+\sin ^{2}(99 x)$ equals
[A] 0
[B] 1
[C] $\cos (198 x)$
[D] 99
[E] $\sin (198 x)$
22. Which of the following best represents one cycle of the graph of $y=\cos (4 x)$?

[B]

[C]

[D]

[E]

23. If $m \angle=30^{\circ}$, then find the length of BC .

[A] $\sqrt{43}$
[B] $85-42 \sqrt{3}$
[C] $\sqrt{85+42 \sqrt{3}}$
[D] $\sqrt{85-42 \sqrt{3}}$
[E] $\sqrt{85}$
24. Which of the following is larger than $\cos \frac{\pi}{6}$?
[A] $\cos \frac{\pi}{2}$
[B] $\cos \left(-\frac{\pi}{4}\right)$
[C] $\cos \frac{\pi}{4}$
[D] $\cos 0$
[E] $\cos \frac{\pi}{3}$
25. Evaluate $\arccos \left(\cos \frac{7 \pi}{4}\right)$.
[A] 1
[B] $-\frac{7 \pi}{4}$
[C] $\frac{7 \pi}{4}$
[D] $-\frac{3 \pi}{4}$
[E] $\frac{\pi}{4}$
26. Evaluate $\tan \frac{5 \pi}{3}$.
[A] $\frac{1}{2}$
[B] $-\sqrt{3}$
[C] $\sqrt{3}$
[D] $\frac{1}{\sqrt{3}}$
[E] $-\frac{1}{\sqrt{3}}$
27. $\cot \left(\frac{\pi}{2}-\theta\right)=$
[A] $2 \tan \theta$
[B] $1-\cot \theta$
[C] ∞
[D] $\tan \theta$
[E] $\frac{1}{2} \tan \theta$
28. For all real numbers $x, \cos (94 x) \cos (92 x)+\sin (94 x) \sin (92 x)=$
[A] $1-2 \sin ^{2} x$
[B] $\cos ^{2} x-\sin ^{2} x$
[C] $2 \cos ^{2} x-1$
[D] All of the above
[E] $\cos (2 x)$
29. In simplified form, $\frac{3 \cos x \sin x+6 \cos ^{2} x}{6 \cos ^{2} x}$ equals
[A] $3 \cos x \sin x$
[B] $\frac{1}{2} \tan x$
[C] $\frac{1}{2} \cot x+6 \cos ^{2} x$
[D] $\frac{1}{2} \cot x+1$
[E] $\frac{1}{2} \tan x+1$
30. If $\cot ^{2} x=\frac{13}{8}$, then $\sec ^{2} x=$
[A] $\frac{21}{104}$
[B] $\frac{13}{5}$
[C] $\frac{21}{13}$
[D] $\frac{5}{13}$
[E] $\frac{13}{21}$
31. Find the set of θ in the range $[0,2 \pi)$ that satisfy the equation $2 \cos ^{2} \theta+3 \cos \theta=2$.
[A] $\left\{-\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
[B] $\left\{-\frac{\pi}{3}\right\}$
[C] $\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$
[D] $\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
[E] $\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$
32. If a central angle of 30° is subtended by a circular arc of length 6 meters, as illustrated below, how many meters in length is the radius of the circle?

[A] $\frac{\pi}{36}$
[B] $\frac{1}{5}$
[C] π
[D] $\frac{36}{\pi}$
[E] 180
33. A 6 -foot spruce tree is planted 15 feet from a lighted streetlight whose lamp is 18 feet above ground. How many feet long is the shadow of the tree?

[A] 5.0
[B] 7.5
[C] 7.8
[D] 9.6
[E] 10.0
34. In the figure below, the lengths of DE, EF and FG are given. What is the area of $\triangle D E G$ in square units?

[A] 29
[B] 47.5
[C] 60
[D] $6 \sqrt{149}$
[E] 120
35. If $\sin x=\frac{12}{13}$ and $\cos x=\frac{5}{13}$ then $\tan x=?$
[A] $\frac{5}{12}$
[B] $\frac{7}{13}$
[C] $\frac{12}{5}$
[D] $\frac{17}{13}$
36. If $0^{\circ}<x<90^{\circ}$ and $\sin x=\frac{1}{2}$ the $\cos x=$?
[A] $\frac{1}{2}$
[B] $\frac{\sqrt{3}}{2}$
[C] 2
[D] $\frac{\sqrt{3}}{3}$
[E] $\frac{2 \sqrt{3}}{3}$
37. From a hot air balloon, the angle between the radio antenna straight below and the base of the library downtown is 57° as shown in the figure below. If the distance between the radio antenna and the library is 1.3 miles, how many miles high is the balloon?

[A] $\frac{1.3}{\sin 57^{\circ}}$
[B] $\frac{1.3}{\cos 57^{\circ}}$
[C] $\frac{1.3}{\tan 57^{\circ}}$
[D] $1.3 \sin 57^{\circ}$
[E] $1.3 \tan 57^{\circ}$
38. What is the smallest positive value of x where $y=\sin 2 x$ reaches its maximum?
[A] $\frac{\pi}{4}$
[B] π
[C] $\frac{3 \pi}{2}$
[D] 2π
[E] $\frac{5 \pi}{2}$
39. One of the graphs below is that of $y=A \sin \theta$ for θ between 0 and 6.28 radians, where A is constant. Which one?

[B]

[C]

[D]

[E]

40. In the right triangle below, the length of AB is 13 units and the length of CB is 12 units. What is the tangent of A ?

[A] $\frac{12}{13}$
[B] $\frac{13}{12}$
[C] $\frac{12}{5}$
[D] $\frac{5}{12}$
[E] $\frac{5}{13}$
41. The perimeter of the figure with the semicircular top is

[A] 21
[B] $16+2 \pi$
[C] $16+4 \pi$
[D] $16+18 \pi$
[E] None of these
42. Evaluate the following expression $\ln \left[\sin ^{2}\left(\frac{3 \pi}{7}\right)+\cos ^{2}\left(\frac{3 \pi}{7}\right)\right]$.
[A] 1
[B] 0
[C] e
[D] $\frac{\sqrt{3}}{2}$
[E] None of the above.
43. Complete the identity: $1-\cos ^{2}(3 x)=$
[A] $\sin ^{2}(3 x)$
[B] $-\sin ^{2}(3 x)$
[C] $3 \sin ^{2} x$
[D] $\frac{1}{3} \sin ^{2}(3 x)$
[E] $\sqrt{\sin (3 x)}$
44. If $\pi<x<\frac{7 \pi}{6}$, then which of the following must be true?
[A] $\tan x<\sin x$
[B] $\cos x>\tan x$
[C] $\cos x<\sin x$
[D] $\sin x<\cos x$
[E] $\tan x>1$
45. Which of the following satisfies the equation $\sin x+3 \sin x \cos x=2 \sin x$?
[A] $x=\sin ^{-1}\left(\frac{1}{2}\right)$
[B] $x=\tan \left(\frac{2}{3}\right)$
[C] $x=\sec 3$
[D] $x=\cos ^{-1}\left(\frac{1}{3}\right)$
[E] $x=\frac{2 \pi}{3}$
46. Evaluate $\sin ^{-1}\left(\frac{1}{2}\right)$.
[A] $\frac{\pi}{6}, \frac{5 \pi}{6}$
[B] $\frac{\pi}{6}$
[C] $\frac{\pi}{3}, \frac{4 \pi}{3}$
[D] $\frac{\pi}{3}$
[E] $\frac{5 \pi}{6}$
47. In a right triangle ABC the hypotenuse is AB and it measures 17 cm . The leg AC measures 15 cm . What is $\cos B$ if $\angle C=90^{\circ}$?
[A] $\frac{17}{8}$
[B] $\frac{15}{17}$
[C] $\frac{8}{15}$
[D] $\frac{15}{8}$
[E] $\frac{8}{17}$
48. Evaluate $\sin \left(\tan ^{-1}\left(-\frac{5}{2}\right)\right)$.
[A] $-\frac{\sqrt{29}}{2}$
[B] $-\frac{5}{\sqrt{29}}$
[C] $-\frac{\sqrt{21}}{5}$
[D] $-\frac{2}{5}$
[E] $-\frac{2}{\sqrt{21}}$
49. Which of the following is equivalent to $\frac{1-\cos ^{2} x}{\cos ^{2} x}$?
[A] $\sec ^{2} x$
[B] $\csc ^{2} x-1$
[C] $\tan ^{2} x$
[D] $\sin ^{2} x$
[E] $-\frac{1}{\sin ^{2} x}$
50. Solve for $x: \frac{4}{3} \cos ^{-1}\left(\frac{x}{4}\right)=\pi$
[A] $-2 \sqrt{2}$
[B] $-\frac{\sqrt{2}}{2}$
[C] $\frac{3 \pi}{4}$
[D] $\frac{3 \pi}{4}, \frac{5 \pi}{4}$
$[E] \pm \frac{\sqrt{2}}{2}$

